IGBT 是电力电子变换中的核心元器件,以低电压控制大功率电路的断开与导通,广泛应用于轨道交通、新能源汽车、军工航天、工业机器等领域。随着我国高铁、航空航天、混合动力汽车的飞速发展, IGBT 模块需要更高的可靠性、更快的开关转换速度、更低的能量损耗等,因此,需要高可靠性的封装技术使芯片的优势能够完全发挥出来。其中,IGBT 封装用散热基板在封装时起着机械互连和电气导通的作用,是高可靠性封装中至关重要的环节。
IGBT 封装对基板材料的要求如下:热导率高、介电常数低、与芯片材料的热膨胀系数相匹配、力学强度优良、加工性能好、成本低、耐热冲击和冷热循环等。
一、IGBT 模块封装用陶瓷材料种类
IGBT 模块的典型封装结构如图所示,可以看出芯片产生的热量主要通过基板和散热翅传递出去,因此基板所采用的材料需要导热性能优良、耐热冲击,同时介电常数要低,避免产生杂散电感,减少能源损耗。为实现机械固定,基板材料还需要具有一定的强度。由于陶瓷材料具有强度高、绝缘性好、导热和耐热性能优良、热膨胀系数小、化学稳定性好等优点,非常适合作为IGBT 封装用基板材料。
市面上常见的作为 IGBT 封装用的基板材料有 AlN、Al2O3、Si3N4等,其具体物理参数如下表所示。还有在这些陶瓷成分的基础上做的一些改性,使其既具有优良的导热性能,又有较高的机械强度,如氧化锆增韧氧化铝陶瓷(ZTA)。陶瓷材料的选择,需要从陶瓷的热导率、热膨胀系数、电绝缘性能、机械强度、成本等进行综合考虑。
Al2O3 陶瓷由于价格低廉,应用最广泛,但是其热导率较低、热膨胀系数高,芯片工作时产生的热量没法及时散出,显著降低了模块的可靠性,不能满足更大功率密度 IGBT 模块的使用要求。
AlN 陶瓷热导率高,在室温下,其理论热导率可以达到 319 W/(m·K),挠曲强度高,与 Si、SiC、GaN 的热膨胀系数相近,是合适的基板选择材料之一。
商业常见的 Si3N4 陶瓷的热导率达到 90 W/(m·K),相对于 AlN 的热导率低,但远大于 Al2O3 的热导率,同时机械强度高,断裂韧性好,高温可靠性更好。因此 Si3N4 在如今的 IGBT 封装基板中具有很大的应用潜力。
二、IGBT 模块陶瓷衬板金属化技术
IGBT 封装用基板在模块中除发挥机械固定元器件的作用外,还需要具有一定的载流能力。单纯的陶瓷材料并不导电,需要将陶瓷金属化后,在金属层刻制电路,才能作为 IGBT 封装用基板材料。这就带来了新的问题,由于金属和陶瓷的热膨胀系数相差很大,在每一次冷热循环后,会在界面处产生残余热应力,长时间累积会导致金属层剥落,陶瓷开裂,使得 IGBT 模块失效。
市面上的 IGBT 封装基板采用直接覆铜(Direct Bonding Copper,DBC)、活性金属钎焊(Active Metal Brazing,AMB)技术和直接敷铝陶瓷基板(Direct Bonded Aluminum,DBA)技术,将不同的金属材料与陶瓷材料互连,作为 IGBT 模块封装用基板。陶瓷和金属互连的难题在于熔融金属难以润湿陶瓷表面,金属与陶瓷的热膨胀系数不匹配,接头处容易产生较大的残余应力。DBC 是利用在 1065~1083℃形成的 Cu-O 共晶液能够润湿大多数陶瓷如 Al2O3、AlN,从而形成可靠的连接。
DBA是基于DBC技术发展起来的新型金属敷接陶瓷基板,是铝与陶瓷层键合而形成的基板,其结构与DBC 相似,也可以像PCB基板一样蚀刻出各式各样的图形。DBA 法常见的有两类:①熔融液态铝敷接法;②金属过渡法。
AMB 是一种钎焊互连的方法,利用钎料中含有的 Ti、Zr、Al、Hf、Nb、Cr、Ta、V 等活性元素与陶瓷基板发生反应,形成中间连接层,从而将金属与陶瓷连接起来。AMB 的优点是焊接工艺简单,结合强度高;缺点是活性元素容易氧化,钎料成本高,需要在高真空或惰性气氛下焊接,使得整个基板的成本提高。
AMB 和 DBC、DBA 有着各自的优缺点,DBC 基板成本低,但是可靠性差,不适合在苛刻环境下使用的 IGBT 模块;而 AMB 得到的基板虽然成本提升,但可靠性高,更适合于高温、高功率密度下使用的 IGBT 模块,例如在航空航天、轨道交通、新能源汽车等领域中使用。DBA 与 DBC 在很多方面类似,但是相比于 DBC,DBA 具有显著的抗热震性能和热稳定性能,且重量轻、热应力小,对提高在极端温度下工作器件的稳定性十分明显,因此特别适合用于功率电子电路。