金瑞欣分享陶瓷基板htcc与ltcc工艺的优劣势
HTCC和LTCC是陶瓷基板加工制作工艺的两大种类,那是不是所有的陶瓷基都适用于这样的工艺呢?今天小编来讲述一下两种工艺单特点和优劣势。
一,HTCC工艺的的优劣势
以采用将其材料为钨、钼、钼\锰等高熔点金属发热电阻浆料按照发热电路设计的要求印刷于92~96%的氧化铝流延陶瓷生坯上,4~8%的烧结助剂然后多层叠合,在1500~1600℃下高温下共烧成一体,从而具有耐腐蚀、耐高温、寿命长、高效节能、温度均匀、导热性能良好、热补偿速度快等优势。
劣势是:
高熔点金属电导率不高
不能直接印刷电阻
生产成本高
二,LTCC工艺的优劣势
LTCC技术是将低温烧结陶瓷粉制成厚度精确而且致密的生瓷带,在生瓷带上利用激光打孔、微孔注浆、精密导体浆料印刷等工艺制出所需要的电路图形,并将多个被动组件(如低容值电容、电阻、滤波器、阻抗转换器、耦合器等)埋入多层陶瓷基板中,然后叠压在一起,内外电极可分别使用银、铜、金等金属,在900℃下烧结,制成三维空间互不干扰的高密度电路,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块,可进一步将电路小型化与高密度化,特别适合用于高频通讯用组件。
LTCC工艺的优势:
第一,陶瓷材料具有优良的高频、高速传输以及宽通带的特性。根据配料的不同,LTCC材料的介电常数可以在很大范围内变动,配合使用高电导率的金属材料作为导体材料,有利于提高电路系统的品质因数,增加了电路设计的灵活性;
第二,可以适应大电流及耐高温特性要求,并具备比普通PCB电路基板更优良的热传导性,极大地优化了电子设备的散热设计,可靠性高,可应用于恶劣环境,延长了其使用寿命;
第三,可以制作层数很高的电路基板,并可将多个无源元件埋入其中,免除了封装组件的成本,在层数很高的三维电路基板上,实现无源和有源的集成,有利于提高电路的组装密度,进一步减小体积和重量;
第四,与其他多层布线技术具有良好的兼容性,例如将LTCC与薄膜布线技术结合可实现更高组装密度和更好性能的混合多层基板和混合型多芯片组件;
第五,非连续式的生产工艺,便于成品制成前对每一层布线和互连通孔进行质量检查,有利于提高多层基板的成品率和质量,缩短生产周期,降低成本。
第六,节能、节材、绿色、环保已经成为元件行业发展势不可挡的潮流,LTCC也正是迎合了这一发展需求,最大程度上降低了原料,废料和生产过程中带来的环境污染。
LTCC的劣势:
1,收缩率问题。LTCC 存在许多涉及可靠性的难点,基板与布线共烧时的收缩率及热膨胀系数匹配问题即是其中的一个重要挑战,它关系到多层金属化布线的质量。LTCC 共烧时,基板与浆料的烧结特性不匹配主要体现在三个方面:
①烧结致密化完成温度不一致;
②基板与浆料的烧结收缩率不一致;
③烧结致密化速度不匹配。这些不匹配容易导致烧成后基板表面不平整、翘曲、分层。不匹配的另一个后果是金属布线的附着力下降。
2,散热问题。虽然LTCC 基板比传统的PCB 板在散热方面已经有了很大的改进,但由于集成度高、层数多、器件工作功率密度高,LTCC基板的散热仍是一个关键问题,成为影响系统工作稳定性的决定因素之一。
随着微电子技术的进步,器件工作能量密度越来越高,如何把热量及时有效地散发出去,保障器件的稳定工作,是封装所面临的艰巨挑战。采用高导热率的材料及新型的封装设计是提高封装部件散热效率的常用方法。
但对LTCC来说,其明显的不足之处就是基片的导热率低(2-6W/m· K),远低于氮化铝基片的导热率(≥100W/m· K),比氧化铝基片的导热率(15-25W/m·K)也低了不少。这限制了LTCC在大型、高性能计算机系统中的应用。
综上所述,相信您对HTCC工艺以及LTCC工艺的优势和劣势都很清楚, 选择用不同的工艺制作陶瓷基电路板,也是考虑到产品性能工艺要求的不同。HTCC高温共烧散热性更好,这恰恰是LTCC共烧的不足,但是LTCC可以做3层以上的陶瓷电路板,HTCC却未必能实现。更多问题可以咨询金瑞欣特种电路。