新闻详情

Si3N4-AMB陶瓷基板在高功率半导体器件中的应用

7 2023-08-28
AMB陶瓷基板

功率电子器件在电力存储,电力输送,电动汽车,电力机车等众多工业领域得到越来越广泛的应用。随着功率电子器件本身不断的大功率化和高集成化,芯片在工作过程中将会产生大量的热。如果这些热量不能及时有效地发散出去,功率电子器件的工作性能将会受到影响,严重的话,功率电子器件本身会被破损。这就要求担负绝缘和散热功能的陶瓷基板必须具备卓越的机械性能和导热性能。由于氮化硅(Si3N4)陶瓷的高导热性、抗热震性及在高温中良好的机械性能,Si3N4-AMB陶瓷基板备受瞩目。

Si3N4为何要用AMB工艺


目前功率半导体器件所用的陶瓷基板多为DBC(Direct Bond Copper,直接覆铜)工艺,Al2O3与ZTA等氧化物陶瓷以及AlN可使用DBC技术与铜接合:将无氧铜经热氧化或化学氧化制程于表面产生一Cu2O层,于1065~1083℃之间利用Cu-Cu2O共晶液相润湿两材料接触面,并生成CuAlO2化合物达成陶瓷与铜键合。

Si3N4-AMB陶瓷基板

然而Si3N4与铜之间不会形成Cu-Si-O化合物,因此必须采用活性金属焊接(Active Metal Brazing,AMB)技术与铜接合,利用活性金属元素(Ti、Zr、Ta、Nb、V、Hf等)可以润湿陶瓷表面的特性,将铜层通过活性金属钎料钎焊在Si3N4陶瓷板上。

Si3N4-AMB的生产流程

AMB工艺根据钎焊料不同,目前主要分为放置银铜钛焊片和印刷银铜钛焊膏两种。以后者为例,首先将Ag、Cu、Ti元素直接以粉末形式混合制成浆料,采用丝网印刷技术将Ag-Cu-Ti焊料印刷在氮化硅陶瓷基板上,再利用热压技术将铜箔层压在焊料上,最后通过烧结、光刻、腐蚀及镀Ni工艺制备出符合要求的氮化硅AMB覆铜板。

AMB氮化硅覆铜板制备工艺流程

在AMB工艺中,利用Ti等过渡金属与Ag、Cu等元素形成合金焊料,具有很强的化学活性,能够与氧化物陶瓷、非氧化物陶瓷等发生反应,促使熔融焊料润湿陶瓷表面,完成氮化硅与无氧铜的连接。活性元素Ti与氮化硅陶瓷反应的主要产物是TiN和TiAl3

但这两种方法都存在一定局限。首先,焊片工艺所用的银铜钛焊片在制备过程中容易出现活性元素Ti的氧化、偏析问题,导致成材率极低,焊接接头性能较差。对于焊膏工艺,在高真空中加热时有大量有机物挥发,导致钎焊界面不致密,出现较多空洞,使得基板在服役过程中易出现高压击穿、诱发裂纹的问题。

而在通过AMB工艺制备氮化硅覆铜基板的过程中,对Si3N4陶瓷和铜片进行除油和除氧化处理、提供较高的真空钎焊环境是目前公知的降低界面空洞率的方法。焊接压力是空洞率最主要的影响因素,适当加压不仅可以使母材与焊料形成紧密的接触,有利于接触反应熔化的进行,而且可以增强熔化焊料的流动性,挤出钎焊界面的气体,从而降低空洞率。

此外,真空+氮气的焊接气氛比真空气氛更有利于降低焊接空洞率,这对AMB工艺也有一定启发作用,不过需要注意的是氮气在高温下可能会和Ti发生化学反应,其他惰性气体(氦气、氩气等)可能更适用于AMB工艺。

Si3N4-AMB基板的特点

 由于焊料/焊片的作用,可使AMB基板较DCB基板的铜、瓷片间键合得更紧密,粘合强度比DBC更高、可靠度更好

 Si3N4陶瓷具有更高的热导率(商用产品的典型值在80到90W/mK),和氧化铝基板或ZTA基板相比、拥有三倍以上的热导率,热膨胀系数(2.4ppm/K)较小,与半导体芯片(Si、SiC)接近,具有良好的热匹配性

AMB基板的热阻比较

 氮化硅具有优异的机械性能(兼顾高弯曲强度和高断裂韧度,和氧化铝基板或氮化铝基板相比,约有两倍以上的抗弯强度),因此具有极高的耐冷热冲击性(极高可靠性),可将非常厚的铜金属(厚度可达800μm)焊接到相对较薄的氮化硅陶瓷上。因此,载流能力较高,而且传热性也非常好

AMB陶瓷覆铜基板热循环测试

Si3N4-AMB基板的应用

Si3N4-AMB具有高热导率、高机械能、高载流能力以及低热膨胀系数,适用于SiCMOSFET功率模块、大功率IGBT模块等高温、大功率半导体电子器件的封装材料,应用于电动汽车(EV)和混合动力车(HV)、轨道交通、光伏等领域。

从性价比方面考虑,目前450/600V的车规级IGBT模块多用DBC陶瓷基板,800V及更高功率的是采用AMB陶瓷基板。SiC功率器件由于集成度和功率密度明显提高,相应工作产生的热量极具增加,采用Si3N4-AMB基板以实现更高的热性能和稳健性成为新趋势

相关资讯

4000-806-106

相关产品

4000-806-106